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We describe in detail how a sliding scale is introduced in the renormalization of a QFT
according to integer-dimensional implicit regularization scheme. We show that since no
regulator needs to be specified at intermediate steps of the calculation, the introduction
of a mass scale is a direct consequence of a set of renormalization conditions. As an
illustration the one-loopβ-function for QED andλϕ4 theories are derived. They are
given in terms of derivatives of appropriately systematized functions (related to definite
parts of the amplitudes) with respect to a mass scaleµ. Our formal scheme can be easily
generalized for higher loop calculations.
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1. INTRODUCTION

In dealing with quantum field theories usually divergent quantities (Green
functions, Feynman integrals, etc.) are found in some large energy region. These
large momenta correspond to short distance singularities resulting from badly
defined quantities such as products of fields at the same point. As these elementary
Green functions are not well-defined functions but rather distributions and since
product of distributions is ill-defined, this leads to the divergences in large momenta
mentioned above. These quantities should, in principle, have physical content. In
order to proceed, a regulator must be imposed in the divergent expressions and, in
the process of renormalization, finite parameters are defined. The renormalization
program has to be a systematic and unambiguously fixed algorithm that satisfies
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the fundamental properties of locality and causality (de Witt and Stora, 1971): it
should correspond to the addition of local counterterms to the Lagrangian density.
The predictivity of the theory, that is the ability to obtain results valid to all orders
of perturbation theory such as the renormalization group equation, relies on these
logical conditions. In general, any renormalization procedure involves two steps
(Bonneau, 1990):

1. A regularization followed by a subtraction procedure;
2. A set of renormalization conditions in order to define the parameters of

the theory.

Step 1 refers to a systematic, uniquely fixed and consistent procedure, power-
ful enough to investigate to all orders of perturbation theory its renormalizability,
fields, finite parameters, and symmetries. A common feature of regularization
schemes is the introduction of (at least) one regularizing parameter (sharp cutoff
32, Pauli–Villars massesm2

i , dimension of space–timeD = 4− ε, . . .), and in the
process of subtracting the divergences, the resulting expressions will remain finite
when the regulator is suppressed. Stated generally, the introduction of regulators is
followed by the introduction of mass parameters. The second step refers to the task
of defining the parameters of the theory (fields, masses, couplings) in a suitable
energy scaleµ in each order of perturbation (Peskin and Schroeder, 1995). This is
accomplished by subtracting each primitive divergence from a specific parameter.
In other words, after introduction of a regularization, the coefficients of the coun-
terterms are completely determined by renormalization conditions, imposed order
by order on the primitively divergent Green functions. The infinite subtraction is
performed in an energy scaleµ, and the study of the behavior of renormalized
Green functions withµ is an important branch in particle physics, issuing the
renormalization group techniques (Brizolaet al., 1999; Callan, 1970; Callanet al.,
1970; Gell-mann and Low, 1954; Stueckenberg and Peterman, 1953; Symanzik,
1970).

In implementing Step 1 mentioned above, the most successful and popu-
lar regularization procedure is the dimensional regularization (DR) (’t Hooft and
Veltman, 1972). The great success of DR is mainly due to the fact that it automat-
ically respects gauge invariance. It is known, however, that it presents problems
in dimensional-dependent theories like chiral or supersymmetric theories. The
proposed alternative, dimensional reduction (Siegel, 1979) is usually employed
in these cases, although inconsistencies may arise at high orders (Jack and Jones,
in press; Siegel, 1980). In this context it is most desirable to develop other reg-
ularization schemes, specific to four dimensions which preserves the consistency
of DR. Recently two such schemes were proposed, thedifferential regularization
and theimplicit regularization. The first one is established in coordinate space and
the latter in momentum space. A mass scale is automatically introduced in dif-
ferential regularization, for dimensional reasons, when the regulated propagators
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are defined. The relation between this mass parameter and the choice of the renor-
malization point, as in DR, is not direct. As we will show, since in the implicit
regularization scheme no specific form of a regulator needs to be specified, the
calculation is not contaminated by regularization parameters in any step. This tech-
nique is therefore most adequate to establish, in a regularization independent way,
the relation between the mass scale and the choice of the renormalization point.
This is the main purpose of the present contribution.

In Section 2 we introduce the implicit regularization technique, the sliding
scale in the renormalization procedure, and systematize the finite contributions
of two- and three-point functions. In Section 3 we discuss the renormalization
group within our scheme and derive theβ-function for QED andλϕ4. Relation
between our approach and the other current schemes can be found in Section 4.
In Section 5 we compare differential, dimensional, and implicit renormalizations.
Final remarks are in Section 6.

2. THE IMPLICIT REGULARIZATION TECHNIQUE AND FINITE
CONTENT OF ONE-LOOP AMPLITUDES

In this section we define the implicit regularization technique (IRT) for a
generaln-loop calculation. We closely follow Gobira and Nemes (submitted). The
first step in implementing the IRT is to assume an implicit regularization4 whenever
a divergence occurs in a Feynman integral. After taking the Dirac trace (if required),
one identifies the divergence degree of the integrals and manipulates the integrand
by means of algebraic identities until the external momenta-dependent parts are
isolated solely in terms of finite contributions. To separate the divergences the
following identity will be used recursively until the last term acquires a negative
degree of divergence in an integration overk in four space–time dimensions:

1

[(k+ p)2−m2]
=

N∑
j=0

(−1) j (p2+ 2pk) j

(k2−m2) j+1

+ (−1)N+1(p2+ 2pk)N+1

(k2−m2)N+1

1

[(k+ p)2−m2]
. (1)

By convenience we divide the diagrams which contribute to a given order in two
classes: the first which do not contain diagrams which possess two point functions
as subdivergences and in the second class those which do.

Let us start with the first class of diagrams. To show how the procedure
works it is enough to consider a general Feynman amplitude with one external
momentump, one coupling constantλ, and one mass parameterm. We work in the

4 The only required condition about the implicit regularization is that it must be even in the loop
momenta and with a connection limit that returns the original integrand.
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four-dimensional space–time although the generalization to any integer dimension
is straightforward. We denote byq a sum of internal momentaki . The amplitude
in question can always be written as

0 =
n∏

i=1

∫
3

d4ki

(2π )4
R(p, q, m, λ)

[
l∏

j=1

f j (p, qj , m2)

]
, (2)

where0 represents 1− PI diagrams,

f j (p, qj , m2) = 1

[( p− qj )2−m2]
, (3)

and

l = number off structures

n = number of loops.

Note that we have explicitly separated the terms involving the external mo-
mentum in the denominator, from which nonlocal divergent contributions can arise
after integration over the internal momenta. The structureR(p, q, m, λ) contains
all other ingredients of the amplitude, such as coupling constants and results of
Dirac traces.

For simplicity we adopt the following notation:

0 = (5R)(5 f ), (4)

where

(5R) =
n∏

i=1

∫
3

d4ki

(2π )4
R(p, q, m, λ) (5)

and

(5 f )
l∏

j=1

f j (p, qj , m2). (6)

As discussed before, the source of all possible troubles in the renormalization
process will arise from the structure (5 f ). Our method focus attention on these
structures. In order to clearly separate finite, “trivial” divergences (whose depen-
dence on the external momenta is only a polynomial) from the nonlocal divergences
we use a strategy which is completely based on the identity (1).

Define the operatorT D which acts on each structuref in the following way:

T0 f = 1

q2
j −m2

+ 2pqj − p2(
q2

j −m2
) { 1

[( p− qj )2−m2]

}
, (7)
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T1 f = 1

q2
j −m2

+ (2pqj − p2)(
q2

j −m2
)2 + (2pqj − p2)2(

q2
j −m2

)2 {
1

[( p− qj )2−m2]

}
, (8)

T2 f = 1

q2
j −m2

+ (2pqj − p2)(
q2

j −m2
)2 + (2pqj − p2)2(

q2
j −m2

)3
+ (2pqj − p2)3(

q2
j −m2

)3 {
1

[( p− qj )2−m2]

}
. (9)

Note that the action of the operatorT D is equivalent to a Taylor expansion around
zero external momentum, where the first term is kept and the rest of the series is
resumed, yielding thus a convenient identity. Note also that the degree of divergence
of the various terms is decreasing.

The procedure we have in mind consists of applying the operation, in a
particular amplitude with the superficial degree of divergenceD, to each
function f j :

T D0 = (5R)
l∏

j=1

T D
j f1(p, qj , m2). (10)

The result of the operation will always have the form

T D f (p, q, m2) = f div(p, q, m2)+ f fin(p, q, m2). (11)

We define

f div(p, q, m2) =
D∑

i=0

f i (p, q, m2). (12)

Let us exemplify. Take a quadratically divergent amplitude. To each contribution
of the form

1

(p− qj )2−m2
,

we associate

f 0(q, m2) = 1

q2−m2
, (13)

f 1(p, q, m2) = 2pq− p2

(q2−m2)2
, (14)

f 2(p, q, m2) = (2pq)2

(q2−m2)3
, (15)
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and

f fin(p, q, m2) = p4− 4p2(pq)

(q2−m2)3
+ (2pq− p2)3

(q2−m2)3[( p− qj )2−m2]
. (16)

The definitions (13)–(16) are not unique. It is simply convenient for our purposes.
Using these we rewrite the amplitude as a sum of various contributions. According
to our notation

T D0 = (5R)
l∏

j=1

[
f div

j (p, q, m2)+ f fin
j (p, q, m2)

]
. (17)

In this way we can identify three distinct contributions for the amplitude

T D0 = 01
fin + 0local+ 0nonlocal, (18)

where

01
fin = (5R)

l∏
j=1

f fin
j (p, q, m2). (19)

The second contribution contains only local divergences and, for some particular
(5R) structure, it can contain finite contributions too. It is identified as

0local = (5R)
1∏

j=1

f div
j (p, q, m2).

= 02
fin + 0div

local. (20)

These local divergences correspond to counterterms which are characteristic of
the order we are renormalizing. For example, they can have the form∫

3

d4k

(2π )4

1

k2−m2
+ p2I log(m2)+ finite part. (21)

The last term in Eq (18), namely the cross-terms, contains finite contributions as
well as “nonlocal” divergences.

0nonlocal= 03
fin + 0div

nonlocal. (22)

These nonlocal divergence contributions will always appear because of the di-
vergent subdiagrams (beyond two-point functions) contained in the graph. As we
will show next in a particular example, the renormalization of previous orders will
always allow one to cancel these contributions if the theory is renormalizable. In
the present scheme the result is automatic and follows from the operation we have
just defined, in an algebraic manner. There is no need for graphic representations
of relevant contributions, although it is possible.
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The renormalized amplitude say, innth-loop order, can therefore be
defined as

0
(n)
R = T D0(n) − 0div(n)

local − 0div(n)
nonlocal (23)

= 01(n)
fin + 02(n)

fin + 03(n)
fin ,

where the contributions0div(n)
local and0div(n)

nonlocal contain the counterterms typical of
ordern as well as the counterterms coming from divergent subdiagrams of previous
order. Notice from the above equation that our framework automatically delivers
the counterterms

01
CT = −0div

local− 0div
nonlocal, (24)

and just as in Bogolubov Parasiuk Hepp Zimmermann, by subtracting off the nec-
essary counterterms leaves with the finite part of the amplitude, the main difference
being that here the counterterms can be read out of the procedure.

Now we proceed to the second class of diagrams, namely those which contain
two-point functions as subdiagrams. Let us callU all the two-point diagrams
contained in a given amplitude0. It is easy to see that they can be factored out
inside of the total amplitude in the following sense:

0 =
∏

all 6 j∈U
R j6

(l )
j

(
q2

j

)
, (25)

whereR j stands for the remaining pieces in the amplitude,j characterizes a
specific two-point function, which is one of the integration momenta (external to
6 j ). Now since the operationT D0 is an identity, i.e.,T D0 = 0, we can define
the partially renormalized amplitude (with all two-point function subdiagrams
properly renormalized) as follows:

0̄ = 0 + 02
CT. (26)

Therefore we have

02
CT =

∏
all 6 j∈U

R j
[
δ

(l )
j m2− A(l )

j q2
j

]
(27)

and 02
CT are all counterterms characteristic subdiagrams involving two-point

functions.δ(l )
j m2 stands for the mass renormalization andA(l )

j for the wave function
renormalization. In order to get the renormalized amplitude of ordern from 0̄ one
proceeds in the same way as for diagrams of class one defined above. We thus have

0R = T D0̄ − 0̄div
local− 0̄div

nonlocal

= 0̄1
fin + 0̄2

fin + 0̄3
fin. (28)

Summarizing, the amplitudes will be written as the sum of basically divergent
parts (defined in each order of perturbation), terms containing differences between
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divergent integrals of the same degree of divergence (which we will call consistency
relations), and finite parts. A word about the consistency relations is in order: An
important ingredient of the IRT are the so-called consistency relations expressed
by differences between divergent integrals of the same degree of divergence. It
was shown (Battistelet al., 1998) that such consistency relations should vanish in
order to avoid ambiguities related to the various possible choices for the momentum
routing in certain amplitudes involving loops, consistently with gauge invariance.
This is an important feature of dimensional regularization and it can be easily
checked that the consistency relations are readily fulfilled in the framework of
dimensional regularization. Alternatively and more generically we can assign an
arbitrary value to such consistency relations and let general symmetry properties
of the theory or physical constraints determine their value (Scarpelliet al., 2001).

Let us now consider the massiveλϕ4
4 theory (Weinberg, 1996a)

LB = 1

2
∂νϕB∂

νϕB − m2
B

2
ϕ2

B −
λB

4!
ϕ4

B. (29)

The indexB means bare parameters. In order to renormalize the theory the multi-
plicative renormalization constantszϕ , zλ, zm are introduced:

ϕB = z1/2
ϕ ϕ, (30)

λB = z−2
ϕ zλλ, (31)

m2
B = z−1

ϕ zmm2. (32)

Perturbative calculations yield an expansion ofn-point Green’s function0(n) in a
conventional defined coupling,

0(n)(p2) =
∞∑

i=0

c(n)
i λ

i , (33)

whereλ is finite and defined in a conventional renormalization point. Let us define
the conventional coupling via the renormalization conditions:

0(2)(p2) = m2 at p2 = 0, (34)

0(4)(p1, p2, p3, p4) = −λ (35)

at p2
i = 0 and pi pj = 0, (36)

∂

∂p2
0(2)(p2) = 1 at p2 = 0. (37)

The choice of this particular value of the external momenta in (34), (35), and
(37) was guided only for convenience, especially since it renders simple expres-
sions. But it is worthwhile saying that the very same results would be obtained
if the renormalization conditions were defined in another numerical value of the
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external momenta (Weinberg, 1996b). The most general case is the definition of
renormalized parameters on a sliding scaleµ. To accomplish this renormalization
conditions in a pointµ the following conditions must be imposed (Gross, 1981):

0(2)(p2) = −m2
µ at p2 = −µ2, (38)

0(4)(p1, p2, p3, p4) = −λµ (39)

at p2
i = µ2 and pi pj = µ2

3
, i 6= j , (40)

∂

∂p2
0(2)(p2) = 1 at p2 = µ2. (41)

The renormalized coupling (38), the renormalized mass (39), and the field nor-
malization (41) are defined at a sliding scaleµ.

As an example, consider the one-loop four-point Green calculation

0
(4)
1 = −zλλ+ (zλλ)2

[∫
3

d4k

(2π )4

1

[(k+ p)2−m2](k2−m2)

]
+ O(λ3). (42)

We identify the logarithmically divergent integral

I =
∫
3

d4k

(2π )4

1

[(k+ p)2−m2](k2−m2)
. (43)

The symbol3 presupposes an implicit regularization. To separate the logarithmic
divergence according to the IRT, one should apply theT0 operator on (43):

I =
∫
3

d4k

(2π )4

1

(k2−m2)2
−
∫

d4k

(2π )4

p2+ 2pk

[(k+ p)2−m2](k2−m2)2
. (44)

The first integral is divergent and the second finite

I =
∫
3

d4k

(2π )4

1

(k2−m2)2
− i

(4π )2
Z0(m2, m2, p2), (45)

where

Z0(m2, m2, p2) =
∫ 1

0
dz ln

(
p2z(1− z)−m2

−m2

)
. (46)

In calculating the finite part of (43) standard methods have been used (Pokorski,
1990). Definingzλ in order to cancel the divergence and imposing the renormal-
ization conditions (39) on (42) yields the expansion in the conventional coupling

λµ = −λ− 3

2

1

(4π )2
Z0(µ2, m2, m2)λ2+ O(λ3). (47)

Notice that since no explicit form of a regulator has been used, one can make
immediate contact with other regularizations. The remarkable aspect of (47) is



P1: GDX/GXB

International Journal of Theoretical Physics [ijtp] pp620-ijtp-452097 October 28, 2002 14:18 Style file version May 30th, 2002

1698 Brizola, Gobira, Sampaio, and Nemes

that the dependence on the sliding scaleµ of the couplingλµ is entirely concen-
trated on theZ0 function. In other words, the parameterλ is “fixed” regarding
the sliding scaleµ. This fact points toward a generalization, viz., that the very
physical content of a theory is concentrated in finite parts, which stems from an
infinite renormalization procedure. Details of calculations of one-loop quantum
electrodynamic amplitudes and their associated Ward identities by using IRT can
be found in Battistelet al. (1998), Scarpelliet al. (2001), and Gobira and Nemes
(submitted). In what follow, we present the functions which systematize the finite
parts of two- and three-point amplitudes and some useful relations between them
in some specific examples.

2.1. TheZα Functions

The application of theT operator innth-order Green’s function yields finite
parts as stated in Section 2. In one-loop calculations, the two-point amplitudes
with at least two propagators and one external momenta will be systematized by
the dimensionlessZα functions5 (Battistel, 1999):

Zα
(
p2, m2

1, m2
2

) = ∫ 1

0
dzzα ln

(
p2z(1− z)− (m2

1−m2
2

)
z−m2

1

−m2
2

)
(48)

wherem2
i stands for a mass parameters,p2 the external momentum, andα ≥ 0.

Usually, two-point Green functions are restricted to single mass particles. Taking
m2

1 = m2
2 ≡ m2, theZα functions assume their most simple form

Zα(p2, m2, m2) =
∫ 1

0
dzzα ln

(
p2z(1− z)−m2

−m2

)
(49)

Equation (49) is not restricted to one mass parameter only, since the following
identity holds:

Zα(p2, m2, M2) = Zα(p2, m2, m2)+ 1

α + 1
ln

(
m2

M2

)
, (50)

where M2 stands for another mass parameter. An important aspect of
quantum field theory calculations is the study of Green functions in the asy-
mptotic region (Peskin and Schroeder, 1995). In the limitp2À m2, (49)
becomes

lim
p2Àm2

Zα(p2, m2, m2)→ 1

1+ α ln

(
p2

m2

)
. (51)

5 The external momenta will restrict to the Euclidean regionp2 < 0.
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Some examples of the use of theZα functions are in order. Consider the
quantum electrodynamics bare Lagrangian density (Weinberg, 1996a)

L = i 9̄Bγ
ν∂ν9B −mB9̄B9B − 1

4
Fαβ

B F B
αβ + eB9̄Bγ

νAB
ν 9B, (52)

where

Fαβ

B ≡ ∂αAβB − ∂β AβB (53)

and

9̄B ≡ 9†Bγ 0. (54)

Multiplicative renormalization constants yield renormalized parameters

AB
ν =
√

z3Aν , (55)

9B = √z29, (56)

eB = z1

z2
√

z3
e, (57)

and

mB = z0

z2
m. (58)

Canonical renormalization conditions define renormalized on-shell
parameters6 , viz.

6(p/ = m) = 0. (59)

d

dp/
6(p/ ) |p/ =m = 0, (60)

5(q2 = 0) = 0, (61)

and

−ie0ν(p− q = 0)= −ieγ ν , (62)

where (59) fixes the electron massm, (60) and (61) fix the residues of the electron
and photon propagators at 1 respectively, and (62) fixes the electron charge to bee.
Although quantum electrodynamics has a “natural” definition of the parameterse
andm, renormalization conditions can be imposed in order to define the parameters
on a sliding scaleµ.
For instance, define (62) off-shell:

−ie0ν(p− q = 0)= −ieγ ν , (63)

6 Here we use the notationp/ ≡ γµ pµ.
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whereµ stands for a sliding scale. Multiplicative renormalization yields a renor-
malized Lagrangian density whose parameters were defined in a conventional
renormalization point

L = −1

4
FµνFµν − 9̄[γ µ(∂µ + ieAµ)+m]9. (64)

Perturbative calculations on (64) yield one-loop first-order self-energy and vacuum
polarization tensor. The first is given by

−i6(p) = −e2
∫
3

d4k

(2π )4

γµ(γ µpµ − γ µkµ +m)γ µ

(2π )4[([ p− k)2−m2](k2−m2)
. (65)

The use of IRT yields (Baˆeta Scarpelliet al., 1998)

6(p) = −ie2(γ µpµ − 4m)I`(m
2) (66)

+ e2

8π2
[(γ µpµ − 2m)Z0(κ2, m2, p2)+ γ µpµZ1(κ2, m2, p2)], (67)

whereκ is an infrared cutoff,m the electron mass, andp the external momentum.
In (67) we separate the amplitude in a basic divergent integral with logarithmic
divergence (in the limit3→∞:

I`(m
2) =

∫
3

d4k

(2π )4

1

(k2−m2)2
(68)

and a finite part systematized by twoZα functions

Z0(µ2, m2, p2) =
∫ 1

0
dz ln

(
p2z(1− z)+ (µ2−m2)− µ2

−m2

)
(69)

and

Z1(µ2, m2, p2) =
∫ 1

0
dzz ln

(
p2z(1− z)+ (µ2−m2)− µ2

−m2

)
. (70)

Another example is the vacuum polarization tensor

−i5µν(q) = −e2
∫
3

d4k

(2π )4
Tr

{
γν(γ µkµ − γ µqµ +m)γµ(γ µkµ +m)

[(k− q)2−m2](k2−m2)

}
, (71)

which yields (Baêta Scarpelliet al., 1998) according to the IRT

5µν(q) = −4

3
e2 1

(4π )2
(qµqν − q2gµν)

×
[

1

q2
(q2+ 2m2)Z0(m2, m2, q2)+ 1

3

]
(72)

− 4

3
e2(qµqν − q2gµν)I`(m

2), (73)

where finite and divergent contributions are clearly separated.
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Let us now consider the functions associated with three-point Green’s
functions.

2.2. Theξαβ Functions

We present a set of functions which characterizes three-point functions in
one-loop calculations. Their most general form reads (Battistel, 1999)

ξαβ
(
µ2

1, µ2
2, µ2

3, p2, q2
) = ∫ 1

0
dz
∫ 1−z

0
dy

zαyβ

Q
(
y, z, µ2

1, µ2
2, µ2

3, p2, q2
) (74)

whereµ2
1, µ2

2, andµ2
3 stand for mass parameters,p2, q2 external momenta, and

α, β ≥ 0. Q is defined as

Q
(
y, z, µ2

1, µ2
2, µ2

3, p2, q2
) = p2y(1− y)+ (µ2

1− µ2
2

)
y+ q2y(1− y) (75)

+ (µ2
1− µ2

3

)
z− µ2

1− 2(pq)yz. (76)

Whenα = β = 0, (74) reduces to a Spence function (Pokorski, 1990). Also, except
for α = β = 0, theξαβ functions can be reduced to theZα functions (Battistel,
1999). For instance, the following identities involvingZα andξαβ functions are
very useful in proving Ward identities (Gobiraet al., 2000):

q2ξ10+ pqξ01 = 1

2

[−Z0
(
µ2

1, µ2
2, p2

)
(77)

− Z0
(
µ2

2, µ2
2, (p− q)2

)
(78)

− (q2+ µ2
1− µ2

2

)
ξ00
]
, (79)

q2ξ20+ pqξ11 = 1

2

[
1

2
Z0
(
µ2

2, µ2
2, (p− q)2

)− Z1
(
µ2

2, µ2
2, (p− q)2

)
(80)

+ 3

2

(
q2+ µ2

1− µ2
2

)
ξ10+ 1

2

(
p2+ µ2

1− µ2
2

)
ξ01 (81)

−
(

1

2
+ µ2

1ξ00

)]
, (82)

q2ξ11+ pqξ02 = 1

2

[
Z1
(
µ2

2, µ2
2, (p− q)2

)− Z0
(
µ2

2, µ2
2, (p− q)2

)
(83)

+ Z1
(
µ2

1, µ2
2, p2

)+ 1

2

(
q2+ µ2

1− µ2
2

)
ξ01

]
. (84)

The asymptotic limit of theξαβ functions can be calculated with the help of (51)
and with the asymptotic limit of the Spence function:
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As an example, consider the one-loop correction for the quantum electrody-
namics vertex

−ie0ν(p, q) = −e3
∫
3

d4k

(2π )4

γµ(γ µpµ − γ µkµ +m)γν(γ µqµ − γ µkµ +m)γ µ

[( p− k)2−m2][(q − k)2−m2](k2− µ2)

(85)

wherep andq are external momenta andµ an infrared cutoff. Using the IRT, one
gets (Baêta Scarpelliet al., 1998)

−ie0ν(p, q) = e3 −i

(4π )2
[4m(pν + qν)− γν(p2+ q2)− 2γ µpµγνγ

βqβ ]ξ00 (86)

+ e3 i 8m

(4π )2
(pνξ10+ qνξ01) (87)

− e3 i

(4π )2
[γν(pµ + qµ)− 2(qβγ

βγ µγν + pδγ
δγνγ

µ)]

× (pµξ10+ qµξ01) (88)

+ e3 i

(4π )2
[2γνF + 4γ µ(pµpνξ20+ qµqνξ02

+ (pµqν + pνqµ)ξ11] (89)

+ e3 i

(4π )2
[Z0(κ2, m2, p2)+ Z0(κ2, m2, q2)]

− γνe3I`(m
2) (90)

and

ξαβ = ξαβ(κ2, m2, p2, q2), (91)

F = F(κ2, m2, p2, q2) ≡
∫ 1

0
dz
∫ 1−z

0
dy ln

(
Q(y, z, κ2, m2, p2, q2)

−m2

)
, (92)

andQ defined by (76). With the aid of (79), (82), and (84) the one-loop (90) finite
parts could be reduced toZα andξ00 functions. In the next section we will briefly
review some aspects of renormalization group equation and show how a mass scale
enters in the definition of renormalized parameters when IRT is used.

3. THE RENORMALIZATION GROUP AND THE IMPLICIT
REGULARIZATION TECHNIQUE

The renormalization group (RG) techniques were originally introduced by
Gell-Mann and Low (1954) as a way of dealing with the large logarithms that
may break down perturbation procedures (Weinberg, 1996b). Let0(E, g, m) be
a physical amplitude that depends on an overall energy scaleE, a dimensionless
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coupling constantg, and a mass calledm. If 0 has dimensionality [mass]D then
simple dimensional analysis tells us that

0(E, g, m) = ED0
(
1, g,

m

E

)
. (93)

In the limit E→∞, we might expect the simple power behavior

0(E, g, m)→ ED0(1, g, 0). (94)

Instead of this simple power behavior, in perturbation calculations the factorED

is found to be accompanied by powers of ln(E/m), which can enter asE→∞
with fixedm only if 0, at fixedE, becomes singular asm→ 0.

Consider now a physical amplitude0(E, gµ, mµ, µ) that depends on dimen-
sionless couplinggµ and massmµ, definedby renormalization conditionson a
sliding energy scaleµ. We definegµ in such a way that, at least for

µÀ mµ, (95)

gµ has no dependence on the scalemµ of the mass of the theory. Again simple
dimensional analysis tell us that

0(E, g, m, µ) = ED0
(
1, gµ,

mµ

E
,
µ

E

)
. (96)

Sinceµ is arbitrary, we can chooseµ = E. Thus

0(E, g, m, µ) = ED0(1, gE, 0, 1). (97)

This has no zero mass singularities because, by construction,gE does not depend on
mµ for E À mµ and so there are no large logarithms, and we can use perturbation
theory to calculate0 in terms ofgE as long asgE itself remains small.7 Consider
Eq. (96), ann-point amputated Green’s function

0(E, g, m, µ) ≡ 0(n)
µ (p1, . . . , pn, mµ, gµ, µ) (98)

obtained from a baren-point amputated Green’s function via multiplicative
renormalization

0
(n)
B (p1, . . . , pn, mB, gB,3) = Z−n/2

φµ

(
3

µ
,

mµ

µ
, gµ

)
×0(n)

µ (p1, . . . , p2, mµ, gµ, µ), (99)

where p1, . . . , pn stand forn external momenta and3 for an ultraviolet cutoff.
Imposing invariance of the LHS of (99) with respect toµ, one gets the RG equation
(Gell-Mann and Low, 1954; Stueckenburg and Peterman, 1953)(

µ
∂

∂µ
+ βµ ∂

∂gµ
+ γmµ

∂

∂mµ

− nγµ

)
0(n)
µ = 0, (100)

7 gE is the finite coupling defined in a conventional renormalization point.
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where

βµ ≡ µ∂gµ
∂µ

, (101)

γmµ
≡ µ∂mµ

∂µ
, (102)

and

γµ ≡ µ

2

d

dµ
ln(Zφµ ). (103)

As stated in the Introduction, in order to properly define the parameters of
a theory, one must specify renormalization conditions. These conditions define
the values of the Green’s functions and, in the process, remove all ultraviolet
divergences. But the values of the renormalized parameters are defined inspecific
external momenta. This simple fact is fundamental to understand how an arbitrary
mass scale enters in the definition of renormalized parameters when handling
amplitudes using the IRT. According to this technique the (nonpolynomial) external
momenta dependence of the amplitude is contained in its finite parts, duly separated
in terms of theZα and/orξαβ functions. Thus, in dealing with0 using IRT we find
that the one-loop renormalized parametersgµ, mµ, andφµ are given in terms of the
Zα and/orξαβ functions, which have explicit dependence on external momenta.
Hence the renormalization group coefficients (101), (62), and (96) can be directly
obtained from derivatives of the systematizedZα and/orξαβ functions relative to
the external momenta.

Consider theλϕ4
4 coupling (47) evaluated in a sliding scaleµ

λµ = −λ− 3

2

1

(4π )2
Z0(m2, m2, µ2)λ2+ O(λ3). (104)

Theβ-function (101) can be evaluated directly from its definition

βµ ≡ µ ∂

∂µ

[
−λ− 3

2

1

(4π )2
Z0(m2, m2, µ2)λ2+ O(λ3)

]
. (105)

Notice that theµ-dependence of the coupling residesonly on the Z0 function.
Hence

βµ = 3

2

1

(4π )2

[∫ 1

0
dz

µ2z(1− z)

µ2z(1− z)−m2
µ

]
λ2+ O(λ3). (106)

Note that the result (106) belongs to the nonasymptotic region. Taking the limit
µÀ mµ yields

βµ = 3

16π2
λ2+ O(λ3), (107)

which is the standard one-loop result toλϕ4
4 theory.
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The same lines of reasoning apply to quantum electrodynamics. The
β-function calculation could be performed from its definition (101), with the cou-
pling given by (90). This would lead to quite lengthy calculations, fortunately
avoidable by the Ward identity

z1 = z2, (108)

which implies

eB = e√
z3

(109)

or, in terms of the fine-structure constantα,

αB ≡ α

z3
. (110)

Imposingµ invariance on Eq. (110) yields

β = 1

z3
µ2 ∂z3

∂µ2
α + O(α2). (111)

By the IRT thez3 finite part reads (Baˆeta Scarpelliet al., 1998)

(z3)fin = 1− α

3π

[(
1+ 2m

q2

)
Z0(m2, m2q2)+ 1

3

]
, (112)

and imposing (63), (112) is evaluated in the external momentumq2 = µ2. Again,
that is how the sliding scaleµenters in the IRT. In other words, in the IRT, the sliding
scaleµ is directly related to the renormalization condition. A straightforward
calculation yields the well-known one-loop asymptotic quantum electrodynamics
β-function8

β = 2

3π
α2+ O(α3) (113)

4. THE ASYMPTOTIC REGION AND CONNECTION BETWEEN
SUBTRACTION SCHEMES

In perturbation theory, the dependence of Green functions on massive param-
eters is expressed by two differential equations. First, the Callan–Symanzik (CS)
equation that describes the breaking of the dilatational invariance under rescaling
in the momenta (Gross, 1981):(

m
∂

∂m
+ µ ∂

∂µ
+ β ∂

∂g
− nγ

)
0(n)(ϕ) = α

∫
[−m2ϕ2]20

(n)(ϕ), (114)

8 This known result is valid in the regionµÀ m.
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wherem andµ are mass parameters,g the coupling, andγ the anomalous dimen-
sion. The other equation is the RG equation derived above [Eq. (100)]:(

µ
∂

∂µ
+ β ∂

∂g
+ γm

∂

∂m
− nγ

)
0(n)(ϕ) = 0. (115)

As we showed, (115) describes the invariance of Green functions under the RG
transformations. The original ideas that lead to (115) stem from Stueckelberg and
Petermann (1953) and Gell-Mann and Low (1954). Mass independentβ-functions
in massive theories indicate the fact that the RG transformations are restricted
to the asymptotic region (Kraus, 1994). The condition for mass independence in
the asymptotic region is the existence of a CS equation of the same form of the
RG equation, i.e., the known massless differential operators of the CS equation
must be the same operators of the RG equation, evaluated in the large momenta
region. It was proved for the massiveλϕ4 theory (though the proof is quite general
(Kraus, 1994)) that the minimal subtraction (MS), modified minimal subtraction
MS (Collins, 1984), and the Bogolubov Parasiuk Hepp Zimmermann Lowenstein
(Zimmermann, 1968, 1969) schemes have normalization properties in the asymp-
totic region:

lim
p2Àm2

∂

∂p2
0(2)(p2 = µ2) =

∞∑
n=0

an
(2)nλ

n (116)

lim
p2Àm2

0(4)

(
p2

i = µ2, pi pj = −µ
2

3

)
=
∞∑

n=0

an
(4)nλ

n+1, (117)

where thean
(k)n are mass independent coefficients. Hence, in all these three schemes

the β-functions and theγ -functions of the CS equation and RG equation are
the same and mass independent. As we saw above, the result (106) is in the
nonasymptotic region and in the limitµÀ mµ, (104) yields using (51)

λµ = −λ+
[

1

(4π )2

3

2
ln

(
µ2

m2

)]
λ2+ O(λ3). (118)

It is interesting to compare (118) to general one-loop results of MS,MS, and the
BPHZL schemes (Kraus, 1994):

MS: λµ = −λ+
[

Z0(κ2, m2)+ 1

(4π )2

3

2
ln

(
µ2

m2

)
+ ln 4π − λE

]
× λ2+ O(λ3), (119)

MS: λµ = −λ+
[

Z0(κ2, m2)+ 1

(4π )2

3

2
ln

(
µ̄2

m2

)]
λ2+ O(λ3), (120)
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BPHZL: λµ = −λ+
[

Z0(κ2, m2)+ 1

(4π )2

3

2
ln

(
− 4µ2

3m2

)]
× λ2+ O(λ3). (121)

here we denote the renormalization point according to the general conventionµ

andµ̄ respectively. It is important to observe that the renormalization conditions
that yield the above expansions in the finite conventional couplingλ are different
from the one we adopted. In (119), (120), and (121), the parameterλ is evaluated
in the Euclidean symmetric point (p2 < 0):

p2
i = κ2 (122)

and

pi pj = −κ
2

3
. (123)

As stated above, the choice of this point does not have physical relevant conse-
quences. Anyway, contact with the results (119), (120), and (121) can be done
with the help of the identity (50). Takingκ2 = 0 in (119), (120), and (121)
yields

MS: λµ = −λ+
[

1

(4π )2

3

2
ln

(
µ2

m2

)
+ ln 4π − γE

]
γ 2+ O(λ3), (124)

MS: λµ = −λ+
[

1

(4π )2

3

2
ln

(
µ̄2

m2

)]
λ2+ O(λ3), (125)

BPHZL: λµ = −λ+
[

1

(4π )2

3

2
ln

(
− 4µ2

3m2

)]
λ2+ O(λ3). (126)

and comparing these results with (118) we see indeed that the IRT applied to
the λϕ4 yields the same asymptotic expressions as the above known schemes.
Again, we would like to stress that the connection between sliding scales and
renormalized parameters is quite natural in the IRT, since it is realized by imposing
renormalization conditions.

5. RELATIONSHIP BETWEEN DIMENSIONAL, DIFFERENTIAL,
AND IMPLICIT RENORMALIZATIONS

In this section we will show how DR, DFR (differential regularization)
(Dunne, 1992), and IRT are related regarding the appearance of a renormaliza-
tion scale. Such comparison is interesting since DR is widely used for analyzing
renormalizable QFT (particularly those involving gauge symmetry) whereas DFR
is an elegant framework which, as well as IRT, does not recourse to analytical
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continuation on the space–time dimension. The idea behind DFR is to redefine
products of Green’s functions in the Euclidean (position) space as proper distribu-
tions: the singularities at coincident points (which have no Fourier transform) are
expressed as derivatives of less singular terms (which do have Fourier transforms).
We follow Dunne (1992).

Consider the identity

|x|−p = ¤|x|−p+2

(−p+ 2)(d − p)
. (127)

For p = d, we cannot use (127) because of the pole. According to the DFR rules,
we must instead substitute

|x|−p |reg := 1

2(2− d)
¤

ln M2|x|2
|x|d−2

, (128)

which holds when|x| 6= 0 and the dependence on an arbitrary mass scaleM
appears for dimensional reasons. It plays the role of scale in the Callan–Symanzik
RG equation.

To make contact with RD we can use identity (127) by extendingd to d − r ε
where it is well defined to write

µr ε |x|−d+r ε = 1

ε
µr ε 1

r (2− d + r ε)
¤|x|d−2 ln M2|x|−d+r ε+2

= 1

ε

4πd/2

r (2− d + r ε)0(d/2− 1)
δ(d)(x)

+ 1

2(2− d)
¤

lnµ2|x|2
|x|d−2

+ O(ε). (129)

Now we can clearly see that finite (no counterterms) part of (129) is identical
to DFR after subtracting the infinite and a finiteO(ε0) counterterms represented
by the delta function and identifyingµ with M .

As a matter of illustration consider the one-loop four-point function ofϕ4

theory. In DR it reads

0(p2, m2) = iλ2µε

16π2ε
− iλ2µε

32π2

{
γ +

∫ 1

0
dz ln

[
p2z(1− z)−m2

4πµ2

]}
. (130)

Defining counterterms to subtract the pole and the term proportional toγ enables
us to write

0R
RD(p2, m2) = iλ2

32π2

{
ln

(
m2

4πµ2

)
− Z0(p2, m2)

}
. (131)
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According to the DFR rules,0R(p2, m2) is written as (Haagensen and
Latorre, 1992)

0R
DFR(p2, m2) = iλ2

32π2

{
ln

(
m2

M2

)
− Z0(p2, m2)

}
, (132)

from which is clear the equivalence of (131) and (132) identifyingM2 = 4πµ2.
Using now the IRT rules we can write

0R
IRT(p2, m2) = λ2

2

{
I`(m

2)− i

4π2
Z0(p2, m2)

}
. (133)

Taking

I`(m
2) = I`(η

2)+ i

4π2
ln
η2

m2
, (134)

where the second term on the RHS of the above equation parametrizes a finite
arbitrary counterterms, into (133) and defining a counterterms to subtractI`(η2)
leads to

0R
IRT(p2, m2) = iλ2

32π2

{
ln

(
m2

η2

)
− Z0(p2, m2)

}
, (135)

making clear the connection between these three schemes.

6. CONCLUSIONS

In treating quantum field theory amplitudes perturbatively, a renormalization
procedure must be imposed to define, order by order, the parameters of the theory.
Such perturbative procedures are plagued by divergences. To remove the diver-
gences and, in the process, redefine the parameters of the theory, a subtraction
scheme associated with a regularization method must be employed. This proce-
dure cannot be performed in a unique way since divergences are present. Thus any
subtraction algorithm must carry a parameter to accomplish the arbitrariness of
this infinite renormalization. A nontrivial issue is what is the role played by this
parameter in the theory. The most general prescription is to state renormalization
conditions which define the values of the Green’s functions in a sliding scale and,
in the process, remove all ultraviolet divergences. When the dimensional regular-
ization is used, an arbitrary mass parameter must be introduced in order to keep
the coupling dimensionality. This parameter is linked nontrivially to the parameter
introduced via renormalization conditions and thus it is used for renormalization
group purposes. Employing the BPHZL scheme, no use of an explicitly cutoff is
required a priori. But the for practical purposes, very often the dimensional reg-
ularization is implemented in intermediary steps and hence breaking the 4-space
dimensionality. Moreover, in IRT we explicitly construct the counterterms without
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changing the structure of the integrand. Using the IRT the role of renormalization
conditions concerning the introduction of a sliding scale is straightforward: the ar-
bitrariness of the sliding scale is directly related to the unavoidable arbitrariness in
the process of separating finite and divergent contributions to physical amplitudes.
Moreover, as we have shown, the finite one-loop parts are systematized in a small
set of functions, namely theZα andξαβ functions. The renormalization conditions
act directly in theZα andξαβ functions which contain all the arbitrariness of the
process. The connection of the systematized functions with renormalization group
results shows that IRT results are calculated in nonasymptotic region and agree
with standard calculations in the large momenta region. The extension of our ap-
proach to non-abelian gauge theories where BPHZ fails to preserve the relevant
Slavnov–Taylor identities (also in the finite part) is presently under study. Since we
do not change the structure of the integrand and keep the arbitrariness expressed
by differences between divergent integrals to be fixed on physical grounds re-
lated to momentum routing invariance, we expect that we can fully preserve gauge
invariance.
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